
Multi-fidelity optimization of a fixed-wing drone using

Geometric Convolutional Neural Networks.

January 29, 2020

1 Introduction

Optimizing the shape of UAVs is of primary importance for the industry. SenseFly, one of the mar-
ket leaders in the fixed-wing drone segment is always looking to minimize the battery consumption
of its aircrafts and therefore offer longer flight ranges to its customers. Since the external design
has a very direct and radical influence on in-flight performances, even a slight improvement is
crucial and brings a non-negligible technological lead on the other actors.

Numerical simulations can be used to assess the performance of the design on a range of flow
velocities and flight conditions, without actually building the drone. Nevertheless, these simulations
are numerically expensive and therefore multiple fidelities can be used. The AirShaper platform
lets the engineer upload a 3D model (via the web interface or via the API service) to have the
aerodynamics analyzed in the cloud. Even with a very efficient and reliable numerical simulator,
manual optimization remains a tedious process. In this report, we show how the Neural Concept
Shape optimization platform can be gracefully combined with AirShaper and exploit the multiple
fidelities to reach an optimal design that achieves better flight performances.

2 Method Overview

2.1 Numerical optimization using Neural Concept Shape

Numerical simulations have become of primary importance for the industry over the last decades.
Nevertheless, since a simulation must be re-run each time an engineer wishes to change the shape
which is being designed, it makes the engineering process slow and costly. A typical approach is
therefore to test only a few designs without a fine-grained search in the space of potential variations.
This is a severe limitation and there have been many attempts at overcoming it and automating
the shape optimization process, but none has been entirely successful yet. A classical approach
to reduce the computational complexity is to use surrogate modelling via Gaussian Process (GP)
regressors, or others, trained to interpolate the performance landscape given a low dimensional
parametrization of the shape space. This interpolator is then used as a proxy for the true objec-
tive to speed-up the computation, which is referred to as Kriging in the literature. However, those
regressors are only effective for shape deformations that can be parameterized using relatively
few parameters and their performance therefore hinges on a well-designed parameterization. Fur-
thermore, the regressors are specific to a particular parameterization and pre-existing computed
simulation data using different ones cannot be easily leveraged.

A recently developed software, Neural Concept Shape (NCS), empowers the engineer with a new
tool, Geometric Convolutional Neural Networks, to build surrogate models of numerical solvers.
It suffers from none of the drawbacks of previous surrogate methods, such as the Kriging one. It
is agnostic to the shape parameters as it processes directly the mesh representation of the design.
Hence, optimization parameters are decoupled from the learning problem and a single predictor
can be trained with a large amount of data and used for many optimization tasks. Unlike Kriging
methods, the engineer does not have to choose and stick to a specific parametrization from the
beginning to the end of experiments. Furthermore, it can leverage on transfer learning abilities of
Deep Learning models to blend simulations from multiple sources and different parametrizations.
To date, NCS is the only CAE-oriented Deep-Learning code that is able to process industrial scale
raw unstructured 3D data directly, without any preprocessing. It uses multi-scale geometric neural
networks, through a combination of surface such as geodesic and euclidean network architectures.
It is able to learn to emulate simulators and reproduce multiple outputs such as integrated scalar
values e.g. drag forces or energy consumption or surface and volumetric field values e.g. pressure
or temperature .

1

2.2 Numerical Simulation with AirShaper

AirShaper (www.airshaper.com) is a cloud-based HPC (high-performance computing) platform
for external aerodynamics. It automates the entire process to go from 3D model to a finished
CFD (computational fluid dynamics) simulation. The required input is limited to the 3D file, the
model scale, position & orientation. The output includes a pdf report with data (including drag &
lift values) & flow visualizations, an online 3D viewer and the full flow field data in OpenFOAM
format. The platform offers steady-state RANS simulations using the k-omega SST turbulence
model, with automatic detection of convergence & sizing of the averaging window for consistent
results. The platform is directly compatible with non-watertight 3D models (accepting gaps &
holes) eliminating any CAD repair effort on the user side. An API (Application Programming
Interface) is available to initiate & process simulations on AirShaper from within another software
application. AirShaper has been awarded ”Motorsport Technology of the Year 2019” for its merits
in the automotive segment.

2.3 Optimization approach

The aim of the project is to optimize the aerodynamic performance of one of SenseFly’s best-
selling drones, while still satisfying aerodynamic and geometric constraints. We have access to
three levels of accuracy for the simulator. The first level gives a very approximate estimate of the
simulation results and corresponds to simulations generated by an internally set simulator. The
second simulation level is the concept simulation from AirShaper, while the third simulation is the
most accurate and corresponds to a detailed simulation from AirShaper.

The detailed level of simulation is expensive to run and therefore we only have a budget of 50
such simulations, which is too small to efficiently optimize a design in our high-dimensional design
space. The optimization framework within NCS lets us nevertheless pre-train a network with lower
accuracy simulations, which is then fine-tuned with higher accuracy ones in order to do the final
optimization at the most detailed level of simulation accuracy.

Geometric Neural
Network

Low accuracy OpenFoam

AirShaper Concept

AirShaper Detailled

Progress of training

Figure 3: Multi-fidelity optimization setup

Denoting by Ω the set of feasible geometries the problem reads:

minimize
V ∈Ω⊂RN×3

− L(V)/D(V)

subject to
{
My(V) = 0

We are using the optimizer of Neural Concept Shape to set up an optimization loop between
the Neural Network and the simulator where the simulator is called back automatically to generate
new simulation samples that are then used to retrain the Neural Network using a specific internal
strategy.

2

www.airshaper.com

3 Setup in Neural Concept Shape

3.1 Optimization within NCS

In order to reduce the number of optimization variables, to ensure a smooth deformation of the
surface, and to handle the geometric constraints, a parametrization of the vertices V = P (V (0), z)
is introduced. V (0) denotes the original vertices and z is a vector of the new design variables.
The NCS framework lets the user define conveniently a set of parametrization modules that can
be stacked to generate and optimize deformations with respect to an initial design.

All the modules can be interchanged at any point of the optimization process. The shape
constraints representing the electronics case which needs to be fitted inside the shape, can be
defined also as a ”projection” parametrizer. The geometric constraints are shown with figure 6.
The objective block lets the user define an objective function to optimize. The objective values
given by the surrogate model and by the ground-truth are automatically stored and logged by the
framework.

As described in Figure 4, the NCS framework lets us define all these components separately and
connect them within the framework to perform the optimization, and in particular to propagate
the derivatives for gradient-based optimization.

Objective

Geometric Neural
Network

Initial Shape

RBF

Rotation

Projection

Output Shape
Gradients
computation

Figure 4: NCS lets the user define the objective, neural network and parametrization module
independently and connect them within the optimization framework.

3.2 Parametrization

We define P (i)(z(i),V) as a continuous and differentiable transformation of the input vertices V ,
from SenseFly’s initial design, according to a variables vector z(i). Moreover we indicate as P (i) ◦

3

P (j) the composition of two parametrization. We now report the three types of parametrization
that we used:

• Radial Basis Function interpolation

• Projection

• Rotation

3.2.1 Radial Basis Functions

In order to smoothly deform the surface, we rely on the Radial Basis Function deformation of the
shape. In this work, we use 50 control points that are chosen on the surface using a farthest point
sampling heuristic. Every point is free to move in all three spatial directions and therefore we have
150 RBF optimization parameters.

In Figure 5 we show the reference geometry (blue) and a random configuration where the 50
control points C (red) are randomly deformed with |Di,j | ≤ 0.02.

(a) Front view. (b) From this view point it is possible to see the pro-
jection done by the parametrization P (proj) on the
fuselage box.

Figure 5: Reference geometry (blue) and a random configuration. Control points C (red) and
deformed control points C + D (light blue).

3.2.2 Projection

This parametrization is designed to ensure that the geometric constraints are satisfied at every
iteration of the optimization process. The requirements impose to have a fuselage which is a
rectangular cuboid of dimensions l =

[
Lx, Ly, LZ

]
=
[
220, 75, 30

]
[mm], see Figure 6. When a

vertex enters the fuselage volume it needs to be projected back on its surface. The projection of
the deformed vertices on the rectangular cuboid is done trough a linear map. Defining as y the
deformed position of a vertex and as x its original position, the following must holds:

yi + (xi − yi)ti = sign(xi)li i = 1, 2, 3

Among the three candidates the one satisfying:

−l ≤ y + (x− y)ti ≤ l

is selected. We will denote this projection operation as P (proj)(V).

4

Figure 6: Physical space constraints handled by the projection parametrizer.

3.2.3 Rotation

Given an axis s, specified by two points p1 and p2, and a rotation angle θ, the rotation of x0

around s is given as an additional parameter.
This parametrization is used to vary the angle of attack θ of the drone (a rotation around the

y axis); however it could also be used to rotate some specific parts of the geometry, such as the
elevators.

It adds one optimization parameter that corresponds to the rotation angle. Since the projector
parametrization is stacked before the rotation, the constraint box ”rotates” with the angle of
attack.

3.3 Geometric Neural Network

We use the typical ”PointRegressor” defined by the NCS framework as our Geometric Neural
Network regressor.

The architecture of our network is illustrated in 7. The first part of the model pre-processes the
input and constructs a set of features by means of the previously introduced geodesic convolution
operations. These features are then used to predict the global scalars via average pooling and two
dense layers. The second branch of the network generates pressure fields relying on an additional
set of geodesic convolutions and point-wise operations.

The new network takes advantage of a GPU efficient implementation of geodesic convolutions,
removing the need to use a Cube-Mesh mapping or any prior remeshing.

3.4 Objectives

In this project, the goal is to maximize the lift-to drag ratio of the drone, with a minimum value
of lift to be guaranteed. NCS offers a module to directly define an optimization objective and
constraints as a function of the output of the Neural Network prediction.

The objective chosen corresponds to the target of maximizing the L/D and we add a numerical
constraint to keep lift above a value of L = 8.0 [N].

5

Figure 7: Network architecture

4 Results

4.1 Pretraining optimization

As a first step, we run a full optimization against a low fidelity simulator. This optimization is used
to start focusing the optimization on potentially interesting designs and to pre-train the Neural
Network.

In Figure 8 we show how the lift-to-drag ratio L/D (that we will call the objective) evolves over
the iterations of the optimization process. Both the ground truth values and the predictions of the
network are shown with their centered moving average (with a window size n = 20). Moreover the
relative error (and its moving average) are also shown.

0 50 100 150 200 250
Iteration

8

9

10

11

12

13

14

15

L/
D
 [−

]

True
MA true, n=20

Pred
MA Pred, n=20

eBee
Retrained

0.0

0.2

0.4

0.6

0.8

1.0

Er
r =

 |T
ru
e
−
Pr
ed

|
|T
ru
e|

[−
]

Err
MA Err, n=20

Optimizati n pr cess.

Figure 8: Evolution of the objective over the optimization process.

Figure 8 clearly shows that the mean objective value increases over time. The reference objective
represents the maximum value of lift-to-drag ratio obtained by simulating the reference geometry
for Nθ = 20 equi-spaced angles of attack −2◦ ≤ θ ≤ 7◦. Even though the moving average is smaller
than the reference objective, our interest is to find an increasing number of geometries better than
the eBee.

6

4.2 Transfer learning

We now switch to the second phase of the optimization, where we aim at reusing the pre-trained
network from 4 to initialize the surrogate model that will be used to optimize the design against
the ”accurate” simulator from AirShaper.

In Figure 9, we demonstrate the advantage of using a pre-trained network to initialize the
second optimization phase. To show that, we compare the accuracy of the surrogate model trained
from scratch on detailed simulations to the model pre-trained on the low-fidelity simulations and
fine-tuned on the high-fidelity ones.

(a) No pre-training. R2 = 30.4% (b) Pre-training on low fidelity simulations. R2 =
54.2%

Figure 9: Predictions of L/D ratio on high-fidelity simulations for a model trained on high-fidelity
simulations where: (a) The model was trained directly on 50 high-fidelity simulations. (b) The
model was pre-trained before on low-fidelity ones. We can see that pre-training the network between
fine-tuning it brings a substantial improvement (more than 20%) in R2 error, which motivates the
transfer-learning approach.

4.3 Final design

By comparing the original design to the optimized one, the lift to drag ratio has increased by
4.25% and the drag has been reduced by 6.25% at maximum L/D. It has to be noticed that the
optimization process was run using only 40 detailed simulations and is already able to converge to
much more efficient designs.

It is interesting to see that the automatic optimization algorithm converges to some shapes &
techniques that have been applied before in aviation. The result is a more organic shape, featuring:

• Anhedral wing setup: the wings of the optimized design feature a more pronounced anhedral
setup (wings pointing downward). This will influence the pressure pattern on the wings and,
although not included in the goal of this optimization, will also result in a more dynamic
response of the drone (as opposed to the self-stabilizing effect of a dihedral wing setup wings
pointing upward).

• Variable angle of attack: the angle of attack of the airfoil section of the wing changes across
the length of the wings. In this case, the angle of attack increases towards the root of the
wing, where there is interference with the flow around the fuselage.

7

Figure 10: Original design of the fixed-wing drone

Figure 11: Optimized design of the fixed-wing drone

• Winglet orientation: the winglets at the end of the wings, which are there to reduce the
wingtip vortex, are tilted inward on the optimized design.

Figure 12: Airflow streamlines on the original design

Figure 13: Airflow streamlines on the optimized design

• Fuselage design: the fuselage in the optimized design features a more airfoil-like design, with
a low leading edge and quite a lot of camber along the length (curvature of the main body).

8

This helps to accelerate the airflow at the top of the fuselage, creating a low-pressure zone
that generates additional lift on the body.

(a) 2D Pressure field on the original design

(b) 3D Pressure field on the original design

Figure 14: Pressure field displayed on the drone. The original design has a only slight camber on
the fuselage.

(a) 2D Pressure field on the optimized design

(b) 3D Pressure field on the optimized design

Figure 15: Pressure field displayed on the drone. The optimized design has a larger camber on the
fuselage, generating additional lift.

9

Authors

We thank the authors and persons who have contributed to this paper:
Neural Concept: Juliette Marrie, Pierre Baqué
AirShaper: Wouter Remmerie
EPFL: Francesco Bardi, Pascal Fua

10

	Introduction
	Method Overview
	Numerical optimization using Neural Concept Shape
	Numerical Simulation with AirShaper
	Optimization approach

	Setup in Neural Concept Shape
	Optimization within NCS
	Parametrization
	Radial Basis Functions
	Projection
	Rotation

	Geometric Neural Network
	Objectives

	Results
	Pretraining optimization
	Transfer learning
	Final design

