Solvers - incrompressible

Advanced course

Legal notes:

- This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OpenFOAM® and OpenCFD® trade marks. OpenFOAM® is a registered trade mark of
 OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
- This content was made in 2014 and may contain incorrect or outdated information. The reader is solely responsible for his or her use of this information and AirShaper cannot be held liable for any damages.

www.airshaper.com

Content

- Solver types
- Model properties
 - Transport properties
 - Turbulence properties
 - RAS properties
- Boundary conditions
- Solver properties
 - fvSchemes
 - fvSolution
 - controlDict

Solver types

	Laminar	Turbulent
Steady state	simpleFoam (simulationType: laminar)	simpleFoam (simulationType: RASModel)
Unsteady state (time dependent)	icoFoam	pisoFoam pimpleFoam

web: http://www.openfoam.org/archive/1.7.0/docs/user/standard-solvers.php

www.airshaper.com

Linked in

Solver types

- IcoFoam
 - Ico: incompressible
- simpleFoam
 - Semi-Implicit Method for Pressure Linked Equations
 - Web: <u>http://en.wikipedia.org/wiki/SIMPLE_algorithm</u>
- pisoFoam:
 - Pressure Implicit with Splitting of Operator
 - Web: <u>http://en.wikipedia.org/wiki/PISO_algorithm</u>
- pimpleFoam
 - merged piso-simple

Linked

Solver types

- Next slides: example files based on simpleFoam solver
- Files can be reused for new geometries of the propeller case, without modification



Linked

Model properties

- Transport properties
 - Location: \constant\transportProperties

- For incompressible flow: $\rho = constant$
- Therefore, only the kinematic viscosity is required

– Dynamic viscosity
$$\mu$$
: $\tau = \mu \cdot \frac{\partial u}{\partial y}$

- Kinematic viscosity v: $v = \frac{\mu}{\rho}$

• Consequence: pressure, force, torque, ... results need to be multiplied by the density to obtain the real value

shear stress,

gradient, $\frac{\partial u}{\partial t}$

naper

Model properties

- Turbulence properties
 - Location: \constant\turbulenceProperties

simulationType

– simpleFoam:

- works with the RASModel Reynolds-Averaged Simulation
- Type of RASModel is defined under "RASProperties"

Linked

RASModel:

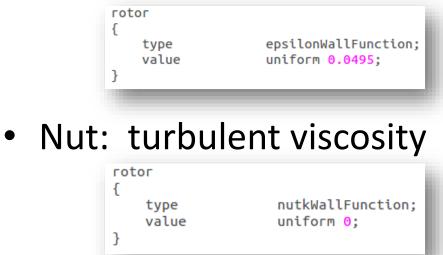
Model properties

- RASProperties
 - Location: \constant\RASProperties

RASModel	kEpsilon;
turbulence	on;
printCoeffs	on;

- Overview: <u>http://www.openfoam.org/features/RAS.php</u>
- Some examples:
 - laminar: dummy model for laminar flow
 - k-epsilon: most commonly used turbulence model
 - K-omega
- Chosen model has impact on required boundary parameters

Linked in

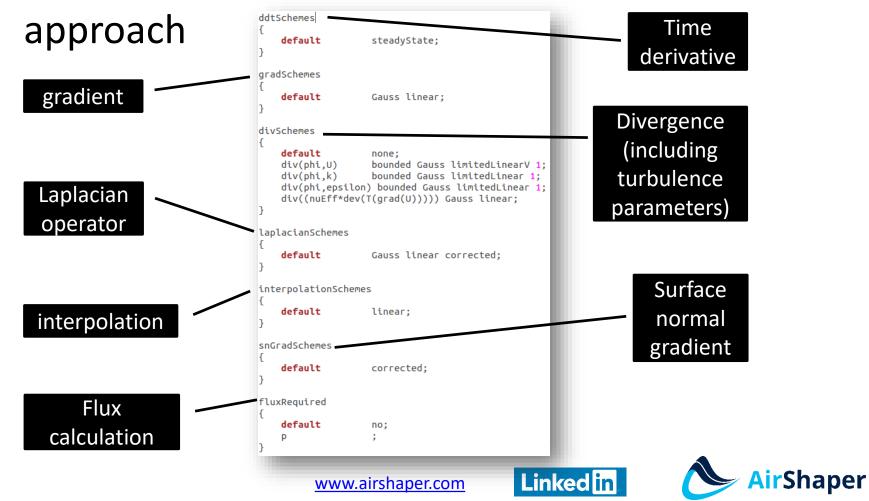

Boundary conditions

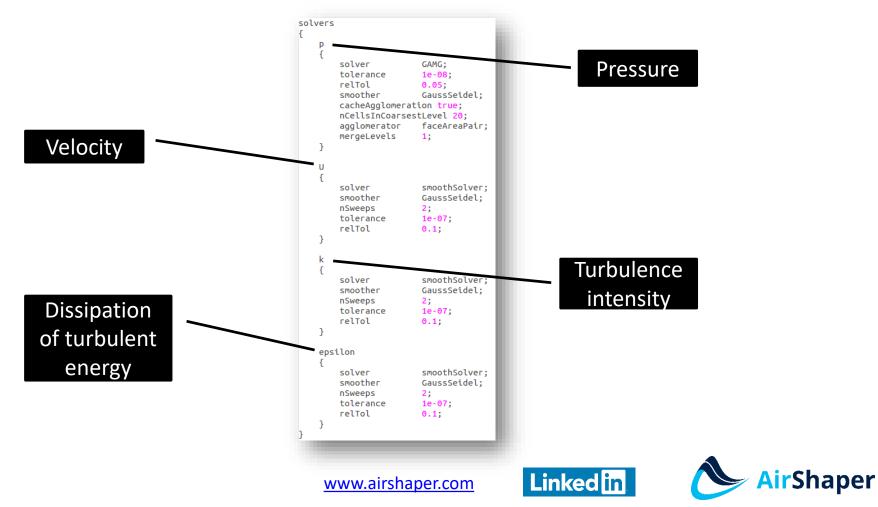
- Location: \0
- K: turbulent kinetic energy

rotor	
{ type	kqRWallFunction;
value	uniform 0.06;
}	

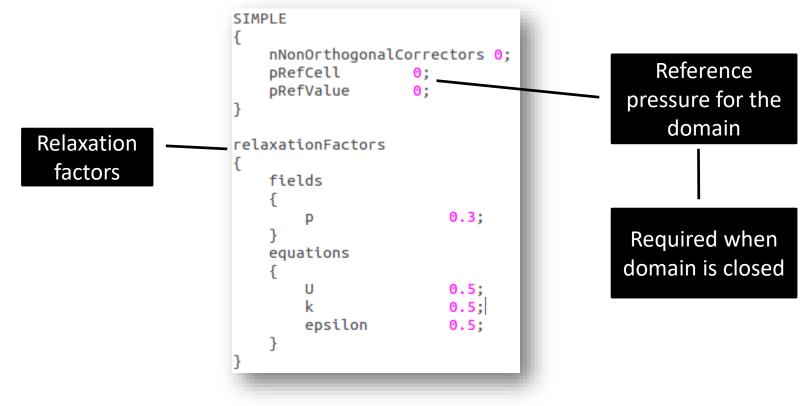
• Epsilon: rate of dissipation of the turbulent energy

www.airshaper.com




Solver properties

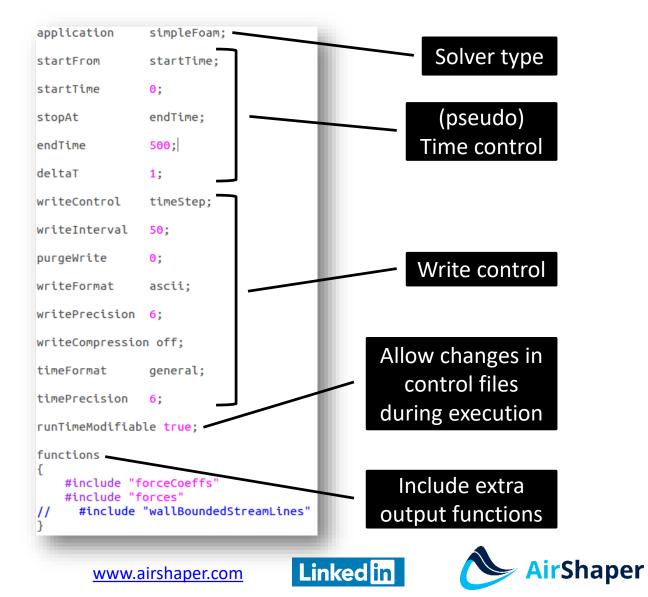
• fvSchemes: schemes for the finite volume


Solver properties

• fvSolution: settings for the iterative solver

Solver properties

• fvSolution: settings for the iterative solver



www.airshaper.com

Linked in

Boundary conditions

controlDict

